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Thermodynamic Interpolation 1

D. E. Maiden
Lawrence Livermore National Laboratory

A method for constructingbicubic interpolationpolynomialsfor thepressureP and internal energy
E that arethermodynamicallyconsistent at themesh pontsand continuousacrossmesh boundaries
is presented. The slope boundary conditions for the pressure and energy are derived from finite
differences of the data and fromMaxwell’s consistency relation. Monotonicity of the sound speed
and the specific heat is obtained by a bilinear interpolation of the slopes of the tabulated data.
Monotonicity of the functions near steep gradients may be achieved by mesh refinement or by
using a non-consistent bilinear fit to the data. Mesh refinement is very efficient for uniform-linear
or uniform-logarithmic spaced data becausea direct table lookup can beused. The direct method
was compared to binary search and was 37 percent faster for logarithmic-spaced data and 106
percent faster for linear-spaceddata. Thisimprovement in speed isvery important in theradiation-
transport opacity-lookup part of thecalculation. Interpolation in P-E space, with mesh refinement,
can bemadesimple, robust, and conserveenergy. In thefinal analysis the interpolation of the free
energy and entropy (Maiden and Cook) remainsa competitor.

Keywords: Equation of State, hydrodynamics, CFD, mix, radiation transport

I . Int roduction

Current equation of state (EOS) tables at LLNL , (EOP), and LANL (SESAME) contain only
internal energy E(�; T ) and pressureP (�; T ) as a function of temperature T and density�. They
arefit withbilinear, bicubic, and rational polynomials. Bilinear methodsaremonotonicbut thespe-
cific heat and sound speeds are discontinuous. Rational and cubic polynomials have undershoots
near phase boundaries causing non-positivesound speeds and specific heats. The interpolants are
not constrained to satisfy Maxwell’srelationsfor thermodynamicconsistency. Thermodynamic in-
consistency may increaseor decreaseentropy thuscausing an increaseor decrease in temperature.

Maiden and Cook developed a thermodynamically consistent monotone bicubic interpolation
of the Helmholtz free energy F (�; T ) or entropyS(�; E): These functions are well behaved and
discontinuities in the pressure appear as changes in slope of the potential function. The pressure
and the energy are evaluated from derivatives of the interpolant. The method ensured thermody-
namic consistency and is monotonic at thephaseboundaries.

This paper presents a method for constructing bicubic interpolation functions of the pressure
P(V,T) and internal energy E(V,T) that are thermodynamically consistent at the mesh points. The
slopeboundary condition of thebicubics aredetermined by finitedifferences of the tabulated data
and from Maxwell’s consistency condition. Because the interpolants may not be monotonic, the
sound speed and specific heat at the mesh points are calculated from finite differences of the data
and are bilinearly interpolated to maintain monotonicity. Corrections are made in the specific
heat to conserveenergy. In regions of sharp discontinuities local mesh refinement is prescribed to
maintain accuracy and monotonicity. The refinement algorithm is based on hierarchical grids in
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which there is a nesting of uniform linear or logarithmic grids with refinement where it is needed
near phase boundaries. The uniform grids permit direct table lookup which is faster than binary
search. Themethodsdescribed in thispaper aresimple, thermodynamically consistent, robust, and
conserveenergy.

II . Thermodynamic Consistency

Thermodynamic consistency requires that the thermodynamic databederived from apotential
function F(V,T). It also implies that the thermodynamic state F(V,T) is uniqueand independent of
path, i.e., F is a state function of V and T. The derivativesFV ; FT ; FV T ; andFTV are assumed to
exist and becontinuous. From thecalculusMaxwell’s relation is

FV T = FTV : (1)

For the interpolant to be thermodynamically consistent it must satisfy this constraint and the ther-
modynamic variablesmust bedefined as derivativesof thepotential.

Thefirst law of thermodynamicsgivesus theenergy equation of the form

dE = �Pd V+ dQ; (2)

whereV = ��1 is thespecific volume, anddV = ��2d�. Thedifferential dQ is theheat releaseor
gain per unit mass, and it may also bewritten as

dQ = TdS; (3)

whereS is theentropy, so that
dE = Td S� Pd V : (4)

TheHelmholtz free energy F(V,T) isdefined as

F = E � TS : (5)

Upon taking thedifferential and substituting Eqn. (4), wehave

dF = �Pd V� SdT: (6)

By taking theexact differential of F(V,T) and comparing terms, wefind

S = �

�
@F

@T

�
V

(7)

and

P = �

�
@F

@V

�
T

: (8)

Differentiation of Eqns. (7) and (8) show that thepressureand theentropy must satisfy Maxwell’s
relation  

@P

@T

!
V

=

 
@S

@V

!
T

: (9)
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Currently, the EOP tables contain only pressureP (�;T ) internal energy E(�;T ): The entropy
S(�;T ) is available for a limited number of materials. Upon taking the derivative ( @

@V
)T of Eqn.

(5) and subsituting Eqns. (8) and (9), weget theconsistency condition

�
@E

@V

�
T

= �P + T
�
@P

@T

�
V

: (10)

This important equation expresses the dependence of internal energy on the volume at a fixed
temperature solely in terms of measurables T, P, and V. It also means that the interpolants must
satisfy thisconstraint.

III . Monotonicity

Thermodynamic stability requires that the isentropic sound speedCS, isothermal sound speed
CT , and specific heatCV bepositive, i.e.,

C2

T =

 
@P

@�

!
T

> 0; (11)

and

C2

S =

 
@P

@�

!
S

> 0; (12)

The isentropic sound speed can berewritten in termsof known quantitiesas

C2

S =

 
@P

@�

!
T

+

 
P

�2
�

 
@E

@�

!
T

! �@P
@T

�
��

@E
@T

�
�

: (13)

When substituting theconsistency condition Eqn. (10) into Eqn. (13) weget thesound speed with
consistency

C2

SC =

 
@P

@�

!
T

+

T
�2

�
@P
@T

�2
��

@E
@T

�
�

: (14)

CV =

 
@E

@T

!
V

> 0: (15)

Also, many new numerical methods rely on Riemann solvers, and most of these methods require
convexity of theEOS. That is,

 
@2P

@V 2

!
S

> 0: (16)

This condition may not be satisfied in regions of phase transitions and corrections to these hydro-
dynamic algorithmsthat have relied on convexity are neccessary.

IV. ApproximateThermodynamically Consistent Interpolation Scheme
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Thebicubic interpolation of freeenergy F and entropy Siscurrently themost effectivemethod
of interpolation of thermodynamic data (see Maiden and Cook). Theschemeis consistent and has
continuous first derivatives. Thermodyamically consistent interpolation schemes for the pressure
P and energy E space can be derived but they are discontinuous at the mesh boundaries. In this
paper a bicubic interpolation scheme is derived that is thermodynamically consistent only at the
mesh pointsand continuousacross mesh boundaries.

Bicubic: Thebicubic interpolantsare:

P = a1 + b1T + c1V + d1V T + e1T
2 + f1V

2 + g1V T 2 + h1V
2T + i1V

2T 2

+j1T
3 + k1V

3 + l1V
3T +m1T

3V + n1V
3T 2 + o1T

3V 2 + p1T
3V 3 (17)

E = a2 + b2T + c2v + d2V T + e2T
2 + f2V

2 + g2V T 2 + h2V
2T + i2V

2T 2

+j2T
3 + k2V

3 + l2V
3T +m2T

3V + n2V
3T 2 + o2T

3V 2 + p2T
3V 3 (18)

There are 32 constants to be determined by evaluating P and E and its first derivatives at the 4
mesh points. Evaluating the pressure P and energy E at the four mesh ponts determine 8 con-
stants. Numerical differentiation of thetabulated datadetermine12 slopeboundary conditionsand
8 twists. The remaining 4 slopes obtained from Maxwell’s relation. There are 4 slopes related to
the isothermal sound speeds and are given by

C2

T = �V 2

 
@P

@V

!
T

(19)

There4 slopes related to thespecific heat and aregiven by

CV =

 
@E

@T

!
V

(20)

Thereare 4 slopesgiven by �
@P

@T

�
V

: (21)

Thereare 8 twistsgiven by �
@2E

@V@T

�
TV

(22)

�
@2P

@V@T

�
TV

: (23)

Maxwellsconsistency condition Eqn. (10) givesus the remaing 4 slopes
�
@E

@V

�
T

= �P + T
�
@P

@T

�
V

:

Thepressureand energy arecontinuous, but there isno guarantee of monotonicity.

Bilinear : In the phase change regions of sharp discontinuity the bilinear interpolation may be
appropriate. Thebilinear functionsof pressureP (V;T ) and internal energyE(V;T ) aregiven by

P = a1 + b1T + c1V + d1V T (24)
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E = a2 + b2T + c2V + d2V T (25)

Thesound speed is given by

C2

T == V 2

 
@P

@V

!
T

= �(c1 + d1T )V
2 (26)

Thespecific heat becomes

CV =

 
@E

@T

!
V

= b2 + d2V (27)

V. Calculation of Sound Speed and Specific Heat

Significantly more accurate first derivatives (specific heat and sound speeds) can be obtained
fromtheEOStablesby takingfinitedifferencesbetween threeneighboringpoints(xi=�1; fi�1); (xi; fi);
and(xi+1; fi+1) is given by atx = xi as

f 0(xi) = fi�1
(xi � xi+1)

(xi�1 � xi)(xi�1 � xi+1)
+fi

(2xi � xi�1 � xi+1)

(xi � xi�1)(xi � xi+1)
+fi+1

xi � xi�1
(xi+1 � xi�1)(xi+1 � xi)

(28)
for equally spaced datah = xi � xi�1 theslopebecomes thecentral difference formula

f 0(xi) =
1

2h
(f(xi+1)� f(xi�1))(29)

In order to ensuremonotonicity, theslopesof theEOSdataarefitted with abilinear interpolant as
follows:

CT = a1 + b1T + c1� + d1�T (30)

Cv = a2 + b2T + c2� + d2�T (31)

Energy Balance between mesh pointsT0 andT1 is

E1 � E0 =
Z T1

T0

CvdT (32)

Where thespecific heat at constant volume isgiven by

Cv =

 
@E

@T

!
v

(33)

A linear variation of specific heat between mesh points isgiven by

Cv =
Cv1 � Cv0

T1 � T0
(T � T0) + Cv0 + � (34)

substituting linear expression for specific heat we get
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E1 � E0 = 1=2(Cv1 + Cv2)(T1 � T0)(35)

where� isan energy correction needed to maintain an energy balance. It isgiven by

� = E1 � E0 � 1=2(Cv0 + Cv1)(T1 � T0)(36)

� isasmall number and varies from zoneto zone. Thespecific heat with energy balancecorrection
isgiven by

Cv0 = Cv0 + � (37)

Cv1 = Cv1 + � (38)

Thespecific heat isdiscontinuousat themesh pontsby asmall amount�.

VI . An Algorith m for Direct TableLookup with Local Refinement

The EOP tables (P(�,T), and E(�,T) have unequal zoning in � and T space because refinement
is required at phase boundaries. The EOP algorithm for locating the interpolation box for a given
�;T pair is a binary search. Each zone in the hydrodynamics remembers which box it was in on
the previous time cycle and used it as an initial guess for the next time cycle. The method is fast.
However, in calculations in a region of phase change, the previous cycle guess may not be a good
one.

The new idea in this paper is to apply local mesh refinement to resolve discontinuities at the
phase boundary. The following describes the method. We define amultilevel mesh refinement al-
gorithm for mesh generation of EOS data that wil l permit direct table lookup of EOS data needed
in hydrodynamic codes. The method maps the�,T values to a set of integers. Linear and loga-
rithmic functions are taken as examples. There is a savings of computer time over current search
methodsparticularly in regionsof aphasechangewhere thereare sharp discontinuities.

The idea is to map the mesh spacing into the integers for a direct table lookup. The location
(i,j) of the interpolation box for given valuesof x and y is

i(x) = int[f(x;x (0); n)](39)

j(y) = int[f(y;y (0); m)](40)

wherex(0) istheinitial point corresponding i=0, n thenumber of zones, x isthehorizontal location
and y is the vertical location of the desired box. The space is coarsely divided with an evenly
spaced mesh. Wherethefunctional valueshavelargevariationssuch asphaseboundariesthemesh
is further locally refined with an evenly spaced mesh.

Uniform-linear-spaced data: Let a linebe divided into n+1 equally spaced pointscontaining
n zonesshown in Fig. 1. Thedistancebetween points is

dx =
x(n)� x(0)

n
: (41)

The location of each node is
6
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x(i) = x(0)+ i � dx: (42)

For any given x, the index of the left hand end point isgiven by

i(x) = int [(x(n)� x(1))=dx] : (43)

In case local refinement isneeded wecan further subdivide into uniform sub grids.

Uniform Logarithmi c spaced data: Similarly, we can subdivide logarithmically. Let a line
bedivided into n+1 equally spaced pointscontaining n zones. Given x(0), x(n) and n then

x(i) = x(0)ei�dx (44)

At i=n wehave
x(n) = x(0)en�dx (45)

so thedistancebetween points is

dx =
1

n
log

 
x(n)

x(0)

!
(46)

The location of each node is
x(i) = x(0)ei�dx (47)

For any given x, the index of the left hand end point isgiven by

i(x) = int

"
n log

 
x

x(0)

!�
dx

#
(48)

For EOS data you may want to divide the temperature linearly and the density logarithmically. In
the Helmholtz free energy F (�;T ) and the entropyS(E;T ) formulation the phase changes occur
at changes in slopeand only acoarse grid may be required.

Results: Figure 1. shows a comparison between binary search and the direct method for
equally spaced logarithmic and linear data. The data shows that for equally spaced logarithmic
zoning, Eqn. (48) is37 percent faster and for equally spaced liner zoning, Eqn. (43) is106 percent
faster. This improvement in speed is very important in time-consuming weapons calculations,
especially in theradiation-transport opacity-lookup part of thecalculaton.

VII . Conclusion

In thispaper abicubic interpolation isderived for interpolatingthepressurePandenergy E. The
schemeisthermodynamically consistent at themesh pontsand continuousacrossmesh boundaries
but there is no guarantee of monotonicity of the interpolant. Alternatively, in regions of a phase
change amonotonic bilinear function could beused at theexpenseof consistency.

Thesound speed and specific heat arecalculated from theslopesof thetabulated data. Thiscan
bedonevery accurately using finitedifferences. Monotonicity of thesound speed and thespecific
heat can be guaranteed by bilinear fit of the slopes of the EOS surface. The specific heat at the
mesh pointscan beadjusted to maintain energy conservation. Thiscauses aslight discontinuity in
thespecific heat that iscalculable.
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Figure1: Comparison of lookup times between binary search, and direct lookup with uniform log
spacing and linear spacing.

The bicubic fitting functions are very efficient and they can bemademonotonic by local mesh
refinement near steep gradients. Local mesh refinement causes no added expense because direct
table lookup is used. It requires uniformly spaced linear or logarithmic data. Compared to binary
search the direct method is 37 percent faster for logarithmic data and 106 percent faster for linear
spaced data. The method speeds up the hydrodynamics but has a significant impact in opacity
lookup in the radiation-transport part of thecalculaton. Thedescribed methodsaresimple, robust,
and conserveenergy.
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